W E K A
4.2
4.2
  • WEKA v4.2 documentation
    • Documentation revision history
  • WEKA System Overview
    • Introduction
      • WEKA system functionality features
      • Converged WEKA system deployment
      • Optimize redundancy in WEKA deployments
    • SSD capacity management
    • Filesystems, object stores, and filesystem groups
    • WEKA networking
    • Data lifecycle management
    • WEKA client and mount modes
    • WEKA containers architecture overview
    • Glossary
  • Planning and Installation
    • Prerequisites and compatibility
    • WEKA cluster installation on bare metal servers
      • Plan the WEKA system hardware requirements
      • Obtain the WEKA installation packages
      • Install the WEKA cluster using the WMS with WSA
      • Install the WEKA cluster using the WSA
      • Manually install OS and WEKA on servers
      • Manually prepare the system for WEKA configuration
        • Broadcom adapter setup for WEKA system
        • Enable the SR-IOV
      • Configure the WEKA cluster using the WEKA Configurator
      • Manually configure the WEKA cluster using the resources generator
      • Perform post-configuration procedures
      • Add clients
    • WEKA installation on AWS
      • WEKA installation on AWS using Terraform
        • Terraform-AWS-WEKA module description
        • Deployment on AWS using Terraform
        • Required services and supported regions
        • Supported EC2 instance types using Terraform
        • WEKA cluster auto-scaling in AWS
        • Detailed deployment tutorial: WEKA on AWS using Terraform
      • WEKA installation on AWS using the Cloud Formation
        • Self-service portal
        • CloudFormation template generator
        • Deployment types
        • AWS Outposts deployment
        • Supported EC2 instance types using Cloud Formation
        • Add clients
        • Auto scaling group
        • Troubleshooting
    • WEKA installation on Azure
    • WEKA installation on GCP
      • WEKA project description
      • GCP-WEKA deployment Terraform package description
      • Deployment on GCP using Terraform
      • Required services and supported regions
      • Supported machine types and storage
      • Auto-scale instances in GCP
      • Add clients
      • Troubleshooting
  • Getting Started with WEKA
    • Manage the system using the WEKA GUI
    • Manage the system using the WEKA CLI
      • WEKA CLI hierarchy
      • CLI reference guide
    • Run first IOs with WEKA filesystem
    • Getting started with WEKA REST API
    • WEKA REST API and equivalent CLI commands
  • Performance
    • WEKA performance tests
      • Test environment details
  • WEKA Filesystems & Object Stores
    • Manage object stores
      • Manage object stores using the GUI
      • Manage object stores using the CLI
    • Manage filesystem groups
      • Manage filesystem groups using the GUI
      • Manage filesystem groups using the CLI
    • Manage filesystems
      • Manage filesystems using the GUI
      • Manage filesystems using the CLI
    • Attach or detach object store buckets
      • Attach or detach object store bucket using the GUI
      • Attach or detach object store buckets using the CLI
    • Advanced data lifecycle management
      • Advanced time-based policies for data storage location
      • Data management in tiered filesystems
      • Transition between tiered and SSD-only filesystems
      • Manual fetch and release of data
    • Mount filesystems
      • Mount filesystems from Single Client to Multiple Clusters (SCMC)
      • Manage authentication across multiple clusters with connection profiles
    • Snapshots
      • Manage snapshots using the GUI
      • Manage snapshots using the CLI
    • Snap-To-Object
      • Manage Snap-To-Object using the GUI
      • Manage Snap-To-Object using the CLI
    • Quota management
      • Manage quotas using the GUI
      • Manage quotas using the CLI
  • Additional Protocols
    • Additional protocol containers
    • Manage the NFS protocol
      • Supported NFS client mount parameters
      • Manage NFS networking using the GUI
      • Manage NFS networking using the CLI
    • Manage the S3 protocol
      • S3 cluster management
        • Manage the S3 service using the GUI
        • Manage the S3 service using the CLI
      • S3 buckets management
        • Manage S3 buckets using the GUI
        • Manage S3 buckets using the CLI
      • S3 users and authentication
        • Manage S3 users and authentication using the CLI
        • Manage S3 service accounts using the CLI
      • S3 rules information lifecycle management (ILM)
        • Manage S3 lifecycle rules using the GUI
        • Manage S3 lifecycle rules using the CLI
      • Audit S3 APIs
        • Configure audit webhook using the GUI
        • Configure audit webhook using the CLI
        • Example: How to use Splunk to audit S3
      • S3 supported APIs and limitations
      • S3 examples using boto3
    • Manage the SMB protocol
      • Manage SMB using the GUI
      • Manage SMB using the CLI
  • Operation Guide
    • Alerts
      • Manage alerts using the GUI
      • Manage alerts using the CLI
      • List of alerts and corrective actions
    • Events
      • Manage events using the GUI
      • Manage events using the CLI
      • List of events
    • Statistics
      • Manage statistics using the GUI
      • Manage statistics using the CLI
      • List of statistics
    • Insights
    • System congestion
    • Security management
      • Obtain authentication tokens
      • KMS management
        • Manage KMS using the GUI
        • Manage KMS using the CLI
      • TLS certificate management
        • Manage the TLS certificate using the GUI
        • Manage the TLS certificate using the CLI
      • CA certificate management
        • Manage the CA certificate using the GUI
        • Manage the CA certificate using the CLI
      • Account lockout threshold policy management
        • Manage the account lockout threshold policy using GUI
        • Manage the account lockout threshold policy using CLI
      • Manage the login banner
        • Manage the login banner using the GUI
        • Manage the login banner using the CLI
    • User management
      • Manage users using the GUI
      • Manage users using the CLI
    • Organizations management
      • Manage organizations using the GUI
      • Manage organizations using the CLI
      • Mount authentication for organization filesystems
    • Expand and shrink cluster resources
      • Add a backend server
      • Expand specific resources of a container
      • Shrink a cluster
    • Background tasks
      • Manage background tasks using the GUI
      • Manage background tasks using the CLI
    • Upgrade WEKA versions
  • Billing & Licensing
    • License overview
    • Classic license
  • Monitor the WEKA Cluster
    • Deploy monitoring tools using the WEKA Management Station (WMS)
    • WEKA Home - The WEKA support cloud
      • Local WEKA Home overview
      • Deploy Local WEKA Home v3.0 or higher
      • Deploy Local WEKA Home v2.x
      • Explore cluster insights and statistics
      • Manage alerts and integrations
      • Enforce security and compliance
      • Optimize support and data management
    • Set up the WEKAmon external monitoring
    • Set up the SnapTool external snapshots manager
  • Support
    • Get support for your WEKA system
    • Diagnostics management
      • Traces management
        • Manage traces using the GUI
        • Manage traces using the CLI
      • Protocols debug level management
        • Manage protocols debug level using the GUI
        • Manage protocols debug level using the CLI
      • Diagnostics data management
  • Best Practice Guides
    • WEKA and Slurm integration
      • Avoid conflicting CPU allocations
    • Storage expansion best practice
  • Appendices
    • WEKA CSI Plugin
      • Deployment
      • Storage class configurations
      • Tailor your storage class configuration with mount options
      • Dynamic and static provisioning
      • Launch an application using WEKA as the POD's storage
      • Add SELinux support
      • NFS transport failback
      • Upgrade legacy persistent volumes for capacity enforcement
      • Troubleshooting
    • Convert cluster to multi-container backend
    • Create a client image
Powered by GitBook
On this page
  • Raw capacity
  • Net capacity
  • Stripe width
  • Protection level
  • Failure domains (optional)
  • Hot spare
  • WEKA filesystem overhead
  • Provisioned capacity
  • Available capacity
  • Deductions from raw capacity to obtain net storage capacity
  • SSD net storage capacity calculation
  1. WEKA System Overview

SSD capacity management

Understand the key terms of WEKA system capacity management and the formula for calculating the net data storage capacity.

Raw capacity

Raw capacity is the total capacity on all the SSDs assigned to a WEKA system cluster. For example, 10 SSDs of one terabyte each have a total raw capacity of 10 terabytes. This is the total capacity available for the WEKA system. This will change automatically if more servers or SSDs are added.

Net capacity

Net capacity is the space for user data on the SSDs in a configured WEKA system. It is based on the raw capacity minus the WEKA filesystem overheads for redundancy protection and other needs. This will change automatically if more servers or SSDs are added.

Stripe width

The stripe width is the number of blocks with a common protection set, ranging from 3 to 16. The WEKA system has distributed any-to-any protection. Consequently, in a system with a stripe width of 8, many groups of 8 data units spread on various servers protect each other (rather than a group of 8 servers forming a protection group). The stripe width is set during the cluster formation and cannot be changed. Stripe width choice impacts performance and space.

If not configured, the stripe width is set automatically to: #Failure Domains - Protection Level -1.

Protection level

Protection Level refers to the number of extra protection blocks added to each data stripe in your storage system. These blocks help protect your data against hardware failures. The protection levels available are:

  • Protection level 2: Can survive 2 concurrent disk or server failures.

  • Protection level 4: Can survive 4 concurrent disk failures or 2 concurrent server failures.

A higher protection level means better data durability and availability but requires more storage space and can affect performance.

Key points:

  • Durability:

    • Higher protection levels offer better data protection.

    • Level 4 is more durable than level 2.

  • Availability:

    • Ensures system availability during hardware failures.

    • Level 4 maintains availability through more extensive failures compared to level 2.

  • Space and performance:

    • Higher protection levels use more storage space.

    • They can also slow down the system due to additional processing.

  • Configuration:

    • The protection level is set during cluster formation and cannot be changed later.

    • If not configured, the system defaults to protection level 2.

Failure domains (optional)

A failure domain is a group of WEKA servers that can fail concurrently due to a single root cause, such as a power circuit or network switch failure.

A cluster can be configured with explicit or implicit failure domains:

  • In a cluster with explicit failure domains, each group of blocks that protect each other is spread on different failure domains.

  • In a cluster with implicit failure domains, the group of blocks is spread on different servers, and each server is a failure domain. Additional failure domains can be added, and new servers can be added to any existing or new failure domain.

Hot spare

A hot spare is the number of failure domains that the system can lose, undergo a complete rebuild of data, and still maintain the same net capacity. All failure domains are constantly participating in storing the data, and the hot spare capacity is evenly spread within all failure domains.

The higher the hot spare count, the more hardware is required to obtain the same net capacity. On the other hand, the higher the hot spare count, the more relaxed the IT maintenance schedule for replacements. The hot spare is defined during cluster formation and can be reconfigured anytime.

Note: If not configured, the hot spare is automatically set to 1.

WEKA filesystem overhead

After deducting the protection and hot spare capacity, only 90% of the remaining capacity can be used as net user capacity, with the other 10% of capacity reserved for the WEKA filesystems. This is a fixed formula that cannot be configured.

Provisioned capacity

The provisioned capacity is the total capacity assigned to filesystems. This includes both SSD and object store capacity.

Available capacity

The available capacity is the total capacity used to allocate new filesystems, net capacity minus provisioned capacity.

Deductions from raw capacity to obtain net storage capacity

The net capacity of the WEKA system is obtained after the following three deductions performed during configuration:

  1. The level of protection required is the storage capacity dedicated to system protection.

  2. The hot spare(s) is the storage capacity set aside for redundancy and to allow for rebuilding following a component failure.

  3. WEKA filesystem overhead to improve overall performance.

SSD net storage capacity calculation

Examples:

Scenario 1: A homogeneous system of 10 servers, each with one terabyte of Raw SSD Capacity, one hot spare, and a protection scheme of 6+2.

Scenario 2: A homogeneous system of 20 servers, each with one terabyte of Raw SSD Capacity, two hot spares, and a protection scheme of 16+2.

PreviousOptimize redundancy in WEKA deploymentsNextFilesystems, object stores, and filesystem groups

Last updated 10 months ago

This documentation relates to a homogeneous WEKA system deployment. That is, the same number of servers per failure domain (if any) and the same SSD capacity per server. For information about heterogeneous WEKA system configurations, contact the .

SSDNetCapacity=10TB∗(10−1)/10∗6/(6+2)∗0.9=6.075TBSSD Net Capacity = 10 TB * (10-1) / 10 * 6/(6+2) * 0.9 = 6.075 TBSSDNetCapacity=10TB∗(10−1)/10∗6/(6+2)∗0.9=6.075TB
SSDNetCapacity=20TB∗(20−2)/20∗16/(16+2)∗0.9=14.4TBSSD Net Capacity = 20 TB * (20-2) / 20 * 16/(16+2) * 0.9 = 14.4 TBSSDNetCapacity=20TB∗(20−2)/20∗16/(16+2)∗0.9=14.4TB
Customer Success Team