W E K A
4.3
4.3
  • WEKA v4.3 documentation
    • Documentation revision history
  • WEKA System Overview
    • WEKA Data Platform introduction
      • WEKA system functionality features
      • Converged WEKA system deployment
      • Optimize redundancy in WEKA deployments
    • SSD capacity management
    • Filesystems, object stores, and filesystem groups
    • WEKA networking
    • Data lifecycle management
    • WEKA client and mount modes
    • WEKA containers architecture overview
    • Glossary
  • Planning and Installation
    • Prerequisites and compatibility
    • WEKA cluster installation on bare metal servers
      • Plan the WEKA system hardware requirements
      • Obtain the WEKA installation packages
      • Install the WEKA cluster using the WMS with WSA
      • Install the WEKA cluster using the WSA
      • Manually install OS and WEKA on servers
      • Manually prepare the system for WEKA configuration
        • Broadcom adapter setup for WEKA system
        • Enable the SR-IOV
      • Configure the WEKA cluster using the WEKA Configurator
      • Manually configure the WEKA cluster using the resource generator
      • Perform post-configuration procedures
      • Add clients to an on-premises WEKA cluster
    • WEKA Cloud Deployment Manager Web (CDM Web) User Guide
    • WEKA Cloud Deployment Manager Local (CDM Local) User Guide
    • WEKA installation on AWS
      • WEKA installation on AWS using Terraform
        • Terraform-AWS-WEKA module description
        • Deployment on AWS using Terraform
        • Required services and supported regions
        • Supported EC2 instance types using Terraform
        • WEKA cluster auto-scaling in AWS
        • Detailed deployment tutorial: WEKA on AWS using Terraform
      • WEKA installation on AWS using the Cloud Formation
        • Self-service portal
        • CloudFormation template generator
        • Deployment types
        • AWS Outposts deployment
        • Supported EC2 instance types using Cloud Formation
        • Add clients to a WEKA cluster on AWS
        • Auto scaling group
        • Troubleshooting
      • Install SMB on AWS
    • WEKA installation on Azure
    • WEKA installation on GCP
      • WEKA project description
      • GCP-WEKA deployment Terraform package description
      • Deployment on GCP using Terraform
      • Required services and supported regions
      • Supported machine types and storage
      • Auto-scale instances in GCP
      • Add clients to a WEKA cluster on GCP
      • Troubleshooting
      • Detailed deployment tutorial: WEKA on GCP using Terraform
      • Google Kubernetes Engine and WEKA over POSIX deployment
  • Getting Started with WEKA
    • Manage the system using the WEKA GUI
    • Manage the system using the WEKA CLI
      • WEKA CLI hierarchy
      • CLI reference guide
    • Run first IOs with WEKA filesystem
    • Getting started with WEKA REST API
    • WEKA REST API and equivalent CLI commands
  • Performance
    • WEKA performance tests
      • Test environment details
  • WEKA Filesystems & Object Stores
    • Manage object stores
      • Manage object stores using the GUI
      • Manage object stores using the CLI
    • Manage filesystem groups
      • Manage filesystem groups using the GUI
      • Manage filesystem groups using the CLI
    • Manage filesystems
      • Manage filesystems using the GUI
      • Manage filesystems using the CLI
    • Attach or detach object store buckets
      • Attach or detach object store bucket using the GUI
      • Attach or detach object store buckets using the CLI
    • Advanced data lifecycle management
      • Advanced time-based policies for data storage location
      • Data management in tiered filesystems
      • Transition between tiered and SSD-only filesystems
      • Manual fetch and release of data
    • Mount filesystems
      • Mount filesystems from Single Client to Multiple Clusters (SCMC)
    • Snapshots
      • Manage snapshots using the GUI
      • Manage snapshots using the CLI
    • Snap-To-Object
      • Manage Snap-To-Object using the GUI
      • Manage Snap-To-Object using the CLI
    • Quota management
      • Manage quotas using the GUI
      • Manage quotas using the CLI
  • Additional Protocols
    • Additional protocol containers
    • Manage the NFS protocol
      • Supported NFS client mount parameters
      • Manage NFS networking using the GUI
      • Manage NFS networking using the CLI
    • Manage the S3 protocol
      • S3 cluster management
        • Manage the S3 service using the GUI
        • Manage the S3 service using the CLI
      • S3 buckets management
        • Manage S3 buckets using the GUI
        • Manage S3 buckets using the CLI
      • S3 users and authentication
        • Manage S3 users and authentication using the CLI
        • Manage S3 service accounts using the CLI
      • S3 rules information lifecycle management (ILM)
        • Manage S3 lifecycle rules using the GUI
        • Manage S3 lifecycle rules using the CLI
      • Audit S3 APIs
        • Configure audit webhook using the GUI
        • Configure audit webhook using the CLI
        • Example: How to use Splunk to audit S3
      • S3 supported APIs and limitations
      • S3 examples using boto3
      • Access S3 using AWS CLI
    • Manage the SMB protocol
      • Manage SMB using the GUI
      • Manage SMB using the CLI
  • Operation Guide
    • Alerts
      • Manage alerts using the GUI
      • Manage alerts using the CLI
      • List of alerts and corrective actions
    • Events
      • Manage events using the GUI
      • Manage events using the CLI
      • List of events
    • Statistics
      • Manage statistics using the GUI
      • Manage statistics using the CLI
      • List of statistics
    • Insights
    • System congestion
    • Security management
      • Obtain authentication tokens
      • KMS management
        • Manage KMS using the GUI
        • Manage KMS using the CLI
      • TLS certificate management
        • Manage the TLS certificate using the GUI
        • Manage the TLS certificate using the CLI
      • CA certificate management
        • Manage the CA certificate using the GUI
        • Manage the CA certificate using the CLI
      • Account lockout threshold policy management
        • Manage the account lockout threshold policy using GUI
        • Manage the account lockout threshold policy using CLI
      • Manage the login banner
        • Manage the login banner using the GUI
        • Manage the login banner using the CLI
      • Manage Cross-Origin Resource Sharing
    • User management
      • Manage users using the GUI
      • Manage users using the CLI
    • Organizations management
      • Manage organizations using the GUI
      • Manage organizations using the CLI
      • Mount authentication for organization filesystems
    • Expand and shrink cluster resources
      • Add a backend server
      • Expand specific resources of a container
      • Shrink a cluster
    • Background tasks
      • Set up a Data Services container for background tasks
      • Manage background tasks using the GUI
      • Manage background tasks using the CLI
    • Upgrade WEKA versions
  • Licensing
    • License overview
    • Classic license
  • Monitor the WEKA Cluster
    • Deploy monitoring tools using the WEKA Management Station (WMS)
    • WEKA Home - The WEKA support cloud
      • Local WEKA Home overview
      • Deploy Local WEKA Home v3.0 or higher
      • Deploy Local WEKA Home v2.x
      • Explore cluster insights and statistics
      • Manage alerts and integrations
      • Enforce security and compliance
      • Optimize support and data management
    • Set up the WEKAmon external monitoring
    • Set up the SnapTool external snapshots manager
  • Support
    • Get support for your WEKA system
    • Diagnostics management
      • Traces management
        • Manage traces using the GUI
        • Manage traces using the CLI
      • Protocols debug level management
        • Manage protocols debug level using the GUI
        • Manage protocols debug level using the CLI
      • Diagnostics data management
  • Best Practice Guides
    • WEKA and Slurm integration
      • Avoid conflicting CPU allocations
    • Storage expansion best practice
  • WEKApod
    • WEKApod Data Platform Appliance overview
    • WEKApod servers overview
    • Rack installation
    • WEKApod initial system setup and configuration
    • WEKApod support process
  • Appendices
    • WEKA CSI Plugin
      • Deployment
      • Storage class configurations
      • Tailor your storage class configuration with mount options
      • Dynamic and static provisioning
      • Launch an application using WEKA as the POD's storage
      • Add SELinux support
      • NFS transport failback
      • Upgrade legacy persistent volumes for capacity enforcement
      • Troubleshooting
    • Convert cluster to multi-container backend
    • Create a client image
    • Update WMS and WSA
    • BIOS tool
Powered by GitBook
On this page
  • Redundancy levels
  • Data stripe width
  • Hot spare capacity
  • Performance required during data rebuilds
  1. WEKA System Overview
  2. WEKA Data Platform introduction

Optimize redundancy in WEKA deployments

PreviousConverged WEKA system deploymentNextSSD capacity management

Redundancy in WEKA system deployments can vary, ranging from 3+2 to 16+4. Choosing the most suitable configuration involves several key considerations, including redundancy levels, data stripe width, hot spare capacity, and the performance required during data rebuilds.

Redundancy levels

Redundancy can be configured as N+2 or N+4, directly impacting capacity and performance. A redundancy level of 2 is typically sufficient for most configurations, while redundancy levels of 4 are reserved for larger clusters with 100 or more backends or critical data scenarios.

Data stripe width

Data stripe width, ranging from 3 to 16, is crucial in optimizing net capacity. Larger stripe widths offer more net capacity but may affect performance during data rebuilds, particularly for highly critical data. Consultation with the is recommended in such cases.

Hot spare capacity

The required hot spare capacity depends on how quickly faulty components can be replaced. Systems with faster response times or guaranteed 24/7 service require less hot spare capacity than systems with less frequent component replacement schedules.

Performance required during data rebuilds

The performance required during a data rebuild from a failure primarily relates to read rebuild operations. Unlike many other storage systems, write performance remains unaffected by failures and rebuilds in WEKA systems because they continue to write to functioning backends within the cluster. However, read performance can be impacted when reading data from a failed component, as this process requires retrieving data from the entire stripe. It requires simultaneous operations and immediate priority for data read operations. For instance, consider a scenario where a single failure occurs in a cluster of 100 backends. In this case, the overall performance is affected by a relatively modest 1%. However, in a cluster of 100 backends with a stripe width of 16, the initial phase of the rebuild can lead to a more significant reduction in performance, up to 16%. In large clusters, the cluster size may exceed the stripe width or the number of failure domains. To maintain optimal performance during rebuilds, it is advisable to ensure that the stripe width is carefully chosen relative to the cluster size.

As a general guideline for large clusters, it's recommended that the stripe width should not exceed 25% of the cluster size. For example, in a cluster composed of 40 backends, an 8+2 protection scheme is advisable. This configuration helps mitigate the impact on performance in case of a failure, ensuring that it does not exceed 25%.

Enhance write performance with a larger stripe width

Write performance in the WEKA system improves as the stripe width increases. This improvement is due to the system having to compute a smaller proportion of protected data than actual data. This effect is particularly notable in scenarios involving substantial write operations, such as systems accumulating data for the first time.

Customer Success Team